Superelastic Nitinol Alloys*

	SE508ELI	SE508	SE506	SE510
PHYSICAL PROPERTIES				
Melting Point:	1310°C	1310°C	1310°C	1310°C
Density:	6.5 g/cm ³	6.5 g/cm ³	6.5 g/cm³	6.5 g/cm ³
Electrical Resistivity:	82 µohm-cm	82 µohm-cm	82 µohm-cm	82 µohm-cm
Modulus of Elasticity:	41 - 75 GPa	41 - 75 GPa	41 - 75 GPa	41 - 75 GPa
Coefficient of Thermal Expansion:	11 X 10 ⁻⁶ / °C	11 X 10-6/ °C	11 X 10 ⁻⁶ / °C	11 X 10⁻⁶/ °C
MECHANICAL PROPERTIES	> 1070 MD>	> 1070 MD>	> 1070 MD>	> 1070 MD>
Ultimate Tensile Strength:	≥ 1070 MPa > 10%	≥ 1070 MPa > 10%	≥ 1070 MPa > 10%	≥ 1070 MPa
Total Elongation (min):	21076	210%	21070	2 10 %
SUPERELASTIC PROPERTIES			~25% lower than	~25% higher than
Loading Plateau Stress @ 3%	≥ 380 MPa	≥ 380 MPa	SE508	SE508
Permanent Set (after 6% strain)	≤0.3%	≤0.3%	≤0.3%	≤0.3%
TRANSFORMATION				
TEMPERATURE	05 1 500	05 . 500	500 0500	05.0
Ingot Austenite Finish (A_f)	-25 to 5°C	-25 to 5°C	5°C to 25°C	-65 to -25°C
Finished Product (A _f)	-25 to 30°C	-25 to 30°C	10°C to 45°C	-65 to 10°C
COMPOSITION (Meets ASTM				
F2063 requirements)			FF 0	50.0 1.0/
Nickel (nominal):	55.8 wt.%	55.8 wt.%	55.6 wt.%	56.0 wt.%
litanium:	Balance	Balance	Balance	Balance
Oxygen. Carbon:	≤ 0.01 WL.%	$\leq 0.04 \text{ WL}\%$	$\leq 0.04 \text{ WL.}\%$	$\leq 0.04 \text{ WL.}$
Loclusion Area Eraction:	< 10%	< 2.8%	< 2.8%	< 2.8%
inclusion Area Fraction.	21.070	\$ 2.070	\$ 2.070	\$ 2.070
APPLICATIONS	SE508ELI is our	SE508 is our	SE506 has	SE510 has a lower
	for your most	with over two	transformation	temperature that
	safety-critical	decades of proven	temperature that	results in a stiffer
	applications. ELI	success as the	results in a softer	feel compared to
	has the fewest and	world's most	feel compared to	SE508. Typical
	smallest inclusions	implanted Nitinol	SE508. Typical	application is
	of any commercial	material.	application is	guidewires with
	Nitinol material.		orthodontic	ennaced kink
				resistarice.

* These values should only be used as guidelines for developing material specifications. Properties of Nitinol Alloys are strongly dependent on processing history and ambient temperature. The mechanical and superelastic properties shown here are typical for standard superelastic straight Nitinol at room temperature tested in uniaxial tension. Bending properties differ, and depend on specific geometries and applications. Modulus is dependent on temperature and strain. Certain shapes or product configurations may require custom specifications. Materials are also available in the cold-worked or annealed conditions.

Nitinol SE508 Wire*

PHYSICAL PROPERTIES Melting Point: Density: Electrical Resistivity: Modulus of Elasticity: Coefficient of Thermal Expansion:	2390°F 0.234 lb/in ³ 32 µohm-cm 6-11 x 10 ⁶ psi 6.1 X 10 ⁻⁶ / °F	1310°C 6.5 g/cm ³ 82 µohm-cm 41-75 x 10 ³ MPa 11 X 10 ⁻⁶ / °C
MECHANICAL PROPERTIES Ultimate Tensile Strength (UTS): Total Elongation:	160-200 x 10³ psi 10%	1100-1150 MPa 10%
SUPERELASTIC PROPERTIES Loading Plateau Stress @ 3% strain (min): Permanent Set (after 6% strain) (max): Transformation Temperature (A _f):	65×10³psi 0.2% 41 to 64°F	450 MPa 0.2% 5 to 18°C
COMPOSITION (Meets ASTM F2063 requirements) Nickel (nominal): Titanium: Oxygen (max): Carbon (max):	55.8 wt.% Balance 0.04 wt.% < 0.02 wt %	

* These values should only be used as guidelines for developing material specifications. Properties of Nitinol Alloys are strongly dependent on processing history and ambient temperature. The mechanical and superelastic properties shown here are typical for standard superelastic straight Nitinol at room temperature tested in uniaxial tension. Bending properties differ, and depend on specific geometries and applications. Modulus is dependent on temperature and strain. Certain shapes or product configurations may require custom specifications. Materials are also available in the cold-worked or annealed conditions.

*All values are typical, at room temperature. SE508 is a binary alloy suitable for superelastic applications at room and/or body temperature.

Nitinol SE508 Tubing*

PHYSICAL PROPERTIES Melting Point: Density: Electrical Resistivity: Modulus of Elasticity: Coefficient of Thermal Expansion:	2390°F 0.234 lb/in ³ 32 µohm-cm 6-11 x 10 ⁶ psi 6.1 X 10 ⁻⁶ / °F	1310°C 6.5 g/cm ³ 82 µohm-cm 41-75 x 10 ³ MPa 11 X 10 ⁻⁶ / °C
MECHANICAL PROPERTIES Ultimate Tensile Strength (UTS): Total Elongation:	155 x 10³ psi 10%	1070 MPa 10%
SUPERELASTIC PROPERTIES Loading Plateau Stress @ 3% strain (min): Permanent Set (after 6% strain) (max): Transformation Temperature (A _f):	55x10³psi 0.3% <59°F	380 MPa 0.3% 5 to 18°C
COMPOSITION (Meets ASTM F2063 requirements) Nickel (nominal): Titanium: Oxygen (max): Carbon (max):	55.8 wt.% Balance 0.04 wt.% < 0.02 wt.%	

* These values should only be used as guidelines for developing material specifications. Properties of Nitinol Alloys are strongly dependent on processing history and ambient temperature. The mechanical and superelastic properties shown here are typical for standard superelastic straight Nitinol at room temperature tested in uniaxial tension. Bending properties differ, and depend on specific geometries and applications. Modulus is dependent on temperature and strain. Certain shapes or product configurations may require custom specifications. Materials are also available in the cold-worked or annealed conditions.

*All values are typical, at room temperature. SE508 is a binary alloy suitable for superelastic applications at room and/or body temperature.

Nitinol SE495 Wire*

PHYSICAL PROPERTIES Melting Point: Density: Electrical Resistivity: Modulus of Elasticity: Coefficient of Thermal Expansion:	2390°F 0.234 lb/in ³ 30 µohm-in 4-6 x 10 ⁶ psi 3.7 X 10 ⁻⁶ / °F	1310°C 6.5 g/cm³ 76 µohm-cm 28-41 x 10³ MPa 6.6 X 10 ⁻⁶ / °C
MECHANICAL PROPERTIES Ultimate Tensile Strength (UTS): Total Elongation:	160 x 10³ psi 10%	1100 MPa 10%
SUPERELASTIC PROPERTIES Loading Plateau Stress @ 3% strain (min): Permanent Set (max): Transformation Temperature (A _f):	15 x 10³psi 8.0% 140°F	100 MPa 8.0% 60°C
COMPOSITION (Meets ASTM F2063 requirements) Nickel (nominal): Titanium: Oxygen (max):	54.5 wt.% Balance 0.05 wt.%	

0.02 wt.%

CONFLUENT

Carbon (max):

* These values should only be used as guidelines for developing material specifications. Properties of Nitinol Alloys are strongly dependent on processing history and ambient temperature. The mechanical and superelastic properties shown here are typical for standard superelastic straight Nitinol at room temperature tested in uniaxial tension. Bending properties differ, and depend on specific geometries and applications. Modulus is dependent on temperature and strain. Certain shapes or product configurations may require custom specifications. Materials are also available in the cold-worked or annealed conditions.

*All values are typical, at room temperature. SM495 is a binary alloy suitable for shape memory applications with transformation requirements greater than 60°C.