Nitinol SE508 Tubing*

PHYSICAL PROPERTIES

Melting Point: Density: Electrical Resistivity: Modulus of Elasticity: Coefficient of Thermal Expansion:	2390°F 0.234 lb/in ³ 32 μohm-in 6-11 x 10 ⁶ psi 6.1 x 10 ⁻⁶ /°F	1310°C 6.5 g/cm ³ 82 μohm-cm 41-75 x 10 ³ MPa 11 x 10 ⁻⁶ /°C
MECHANICAL PROPERTIES Ultimate Tensile Strength (min. UTS): Total Elongation (min):	155 x 10 ³ psi 10%	1070 MPa 10%
SUPERELASTIC PROPERTIES		

Loading Plateau Stress @ 3% 55×10^3 psi380 MPastrain (min): 55×10^3 psi380 MPaPermanent Set (after 6% strain) (max):0.3%0.3%Transformation Temperature (A_f): $<59^{\circ}$ F $<15^{\circ}$ C

COMPOSITION (Meets ASTM F2063 requirements)

Nickel (nominal):	55.8 wt.%
Titanium:	Balance
Oxygen (max):	0.05 wt.%
Carbon (max):	0.02 wt.%

COMMENTS

These values should only be used as guidelines for developing material specifications. Properties of Nitinol Alloys are strongly dependent on processing history and ambient temperature. The mechanical and superelastic properties shown here are typical for standard superelastic straight tube at room temperature tested in uniaxial tension. Bending properties differ, and depend on specific geometries and applications. Modulus is dependent on temperature and strain. Larger tubes (\geq 4.0mm OD) may require custom specifications.

*All values are typical, at room temperature. SE508 is a binary alloy suitable for superelastic applications at room and/or body temperature.

Confluent Medical Technologies • 47533 Westinghouse Drive • Fremont, California 94539 (510) 683-2000 • Fax: (510) 683-2001 • sales@confluentmedical.com • confluentmedical.com