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nu:: w-PHASE REACTION IN TITANIUM ALLOYS 

T. W. Duerig, G. T. Terlinde, and J. C. Williams 

Carnegie-Mellon Univer.ity, Pittsbur gh, PA, U. S.A. 

Introduction 

The a+w tran.for.ation represents a so~wbat unusual problem in that it 
bas received .ignif icant attention , both theoretically and experimentally, 
from materiala scientists and from .aterials engineers . The former group 
view the transformation aa s fully rever.ible, displaeement eontrolled trana­
for.ation and continue t o seek new ways co study the phenomenon. The engin­
eers, on the other hand, view w-phase formation as the source of embrittle­
ment and , therefore, search for ways to avoid it . As a result of thest var­
iour mo tivatioos for studying it, the B!w transforma t ion is now =uch better, 
but still not completely , understood. 

In this paper we will first briefly review the general characteris tics 
of the w-phase. Then we will di$cu$s the current $Catus of the sthermal s:w 
transformation and comment on the r elationship between this transformation 
and isothermal w formation. Finally, we will present some new observations 
regarding the morphological changes during isothermal w-phase formation in­
cluding observations on the rel ationship between the wand a phases. 

Characteris tics of the w-Phase 

The ideal omega structure can be viewed as having a hexagonal (P6/mmm) 
unit cell , with 3 a toms per cel l, positioned at! (0,0,0). (1/3,2/3,1/2) , and 
(2/3 ,1/3,1/2) . The ~esulting cIa ratio is 0.613. In Ti alloy systems , this 
ideal structute has been confirmed both by X-ray and electron diffraction 
{1-3}. In other w forming syste~s (based on Zr or Nf) , an axial shift of the 
cell internal atoms has been reported, which ~esults in a (c/a) ratio slight­
ly greater than .613(4). 

The w-ph&se can form in either of tWD dis t inct modes. In relatively 
dilute alloy compositions , the w-phase appears during the rapid quenchi ng 
from t he S-phase field to t~peratures below the w start temperature (TW). 
This type of w is referred to a$ atherqal w (Wath)' Iaother.al aging of 
the5l!. alloys, aa well as alloys richer in a stabil i:ing alloying additions, 
produces isothermal w (Wiso), 

Isothermal w is generally reported as having either an ellipsoidal or 
cuboidal morphology. As will be discussed in chiS paper, the primary shape 
controlling fac tor is the S/w misfit which in turn is controlled by the. sol­
ute misfit in the S-phase. 

Another aspect of the ~ transformation is Observed after quenching 
alloys slightly too rich to form wa th' Specif ically, a "pre- t r ansition" 
phenomenoo is observed. Although no discrete particles can be visibly assoc­
iat ed with this region, streaking in reciprocal space has been obsetved by 
both electron and X-ray d i ffraction. This phenomenon has been the subj ec t of 
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many theoretical and 
the "pre-transition" 

experimental investigations. Hovever, 
streaking are beyond the scope of this 

discussions of 
ps per{5,6,7]. 

Although the emphaal$ of t hi.s paper will be on the i sothermal fo rlllllt ion 
of W, we feel that wiso and Wath are more closely related than has been pre­
viously recognized. Thus, it will f irst be necessary to review the displace­
ment controlled reaction vhich is attributed to Wath formation before pre­
senti ng our views and evidence vhich relate the tWO reaetion products, wiso 
and Wath' 

The Displacement Controlled Reaction - Wath 

In Figure 1, free energy versus composition curves are represented for 
the a, w, and a phases in a hypothetical w forming alloy system (viz-Ti-V). 
Although the S+w common tangent is metastable relative to the a+a tangent , 
in practice the a - phase precipitates very slowly compared to w. For the pur­
poses of following discussions, we viII focus our attention on w-formation 
and ignore the subsequent precipitation of a. 

Between compositions A and C of Figure 1, a is energetically unstable 
with respect to decomposition into the wand 6 phases. We should expect 
that the a-phase will decompose into a 6 matrix at composition A, with w 
particles of composition C, Since this reaction requires diffusion, it can 
be suppressed by quenChing. If t he alloy composition falls between A and B, 
however , a compositionally invariant transformation from a to W is sti ll ener­
getically favorable. But for this to occur, a diffusionless lIIeCbanism for 
changing the a s tructure into W is required. 

Experimental evidence fo r the existence of such a composit ionally i nvar­
iant mechanism is abundant, but the deta i l s of the mechanism are much more 
difficult to determine . The observation that the w

atl 
reaction cannot be 

suppressed by quenching rates as high as ll,OOO°C/sec 8] cer tainly i ndicates 
that a composition change is unlikely. Reversibility s tud ies performed below 
OOC with cold stage TEM[9] provide further eVidence that the r eaction is com­
positionally invariant. Evidence that the &->-w reaction does not involve high 
diffusivity paths is evidenced by the consistently reported uni form nature of 
Wath, as well as the extremely high particle density (~1018/cm3) (Fig. 2). 
The small size and the uniformity of W, the lack of surface effects , and the 
short range atom movements associated with the crystal struc ture change are 
among those f a ctors which separate the w mechanism from the classical mar­
tensitic r eactions which are dominated by Isttice shear. The damping assoc­
iated with the ~ r eaction also is consistent with an atomic shuffle trans­
formation, rather than a diffusional one. 

De Fontaine(lO] first pOinted out that a ~ ~ t <112> transverse bcc 
lattice displacement wave of the proper amplitude would convert the bcc 
a-phase to the ideal W structure. Further, he showed that such a mechanism 
would result in the observed ori.entation relation: 

[lll] all [OOOl]w 

(110)611 (1l20)w 
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Figur e J demonstrates this by viewing the (110) plane of the 8 =a trix 
(cl osed circ l es) . during passage of a k. • !. [112] sinusoidal t unsver se dis­
placement wave. The d isplaced atomic . J positions r esulting from 
such a wave are shown by the open circles . This displ aced, or periodically 
disturbed , structure is then the (1120) plane of the w structure. 

De Fontaine was abl e to show by harmonic lattice theory that mintmum 
stabil ity contours in the bce structure fe ll along t he {lll} octahedral 
planes i n r eciprocal s pace . FUrther, t hat the stabil ity minimums corres­
ponded to k • 1 <112> transverse ~aves, ~hich can be eQuivalently viewed aa 

• l 
2/3 <111> l ongitud i nal waves . 

Harmonic theory was no t, however, able to account for several aspee t s 
of the 6+w transformation. Specifieally, it provided nO acti vation barr ier 
for the lattice displacement. The implieations of t his were t ha t nothing 
would prevent the w·reaction from going to completion. Also. t here was no 
preference provided for phonons of the specific wave ampli t ude reQuired to 
for m w from 8 . This problem was corrected by Cook!ll,lJ], who used an an­
harmonit approximation of lattice energy. Cook 's approximat ion of lattice 
energy took. t he form: 

F 

where Yij and Yijk are coupling par ameter s , and are physicall y the second 
and thir detivatives of the 1attiee free energy-F with relpect t o the plan­
ar displacelllents - U1' Uj and Uk ' It is the second tetlll, t he anharmonic 
t erm, of this expression that dr ives the w reacti on. This thi rd order coup­
l ing tetlll appears to be impor ta nt only at l ow telDperatures . (Graphically we 
can visualize this by studying FiBure 4) . Plotted are the lattice enersy and 
displ ac ement amplitude for a transverse wave of k • 1 <112> Below the omesa 
start temperature - Tw. the energy minimum ~ J • corresponding 
to the w s tructure must lie below that for the 8 structure. Separating the 

~i:~Q~ ~::;f~xw:~!~~ ~h;~~ m~~!*~:v:~s~~~i~~;i~:de~~~~~h~:;r!~:d~~: :~s~c-
cussed above are evidence that F must be very small. Above Tw' the energy 
minimum associated with t he w structure may still exisr, but is now meta­
s table to t he 8. From Figure 4, we can see tha t a wave of amplitude greater 
than A* i s reQuired t o form w. To achieve this , Cook lll] hiS proposed that 
the amplitude of the above displacement wave be thermally modulated . The re­
sult 1s pietur ed in Figure 5 , as r esu1arly spaced wave packets. Since the 
amplitude of t he modulated displace.ant wave alternates polarity from packet 
to packet , every other wave packet is out of phase by 180· with the reQuired 
w dilp1acement. Thus every other packet is a potential w f ormer. If the 
envelope ~plitude is above A* , w will form . A phonon flipping mechanism[ll ] 
could subseQuently transform t he remaining packets to w. The end result , as 
pr edicted by this model. is a field of w particles spaced periodically along 
the <111> directions (Fig . 5b). with a apacing controlled by the envelope 
frequency or, in this case , by the temperature. 

Finally, i t is useful to examine the seQuence of events occurri ng as an 
w forMing a lloy i s rapidly heated to an agi ng temperature - Ta>Tw' Dur ing 
heating, t he w f ree energy curve of Figure 1 wil l r ise r elative to t he B 
curve. This is qualitatively eQuivalent to shifting our alloy cOlDposition 
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to the right in Figure 1. Above Tw' our alloy composition must lie to the 
right of composition B. Between compositions Band C, the a structure is 
energetically preferable to w, assuming, of course, local composition 
changes by diffusion are suppressed. 

From both Figure I and Figure 4, we do not then expect to observe the 
athermal w reaction above Tw . Cold stage microscopy has revealed, however, 
that the reversion of w to a occurs over a range of temperatures[9]. Diffuse 
neutron scattering work[14] has shown that w particles are present well above 
Tw' even though no particles were Vi sible in TEM. Cook[13J has stated that 
this presents no theoretical difficulties. The apparent contradiction be­
tween microscopy and neutron scattering can be understood in terms of parti­
cle lifetime. Fluctuations between the a and the quasi-static w structures 
could be too rapid for detection using microscopy, but could be readily found 
by neutron scattering[14j. Moreover , these heterophase fluctuations above Tw 
should be expected, since an w energy well in Figure 4 still exists, and be­
cause 8-wath strain fields ar e likely to be extremely small. For the purposes 
of the following discussion, it will be necessary to assume that the w struc­
ture can persist above Tw in a steady state equilibrium, but that the number 
of w particles decreases as (T-Tw) increases . 

Isothermal w 

The nucleation of w during isothermal aging appears to progress indepen­
dently of both grain boundaries and dislocations . Further, recent work[15] 
has demonstrated that residual solute depleted zones (resulting from a phase 
separation reaction in the Ti-Cr system) do not seem to effect w nucleation . 
We suggest that at aging temperatures near Tw, growth may continue from the 
quasi-static Wath part icles which remain after heating to Ta. Figure 6 
supports this view. The size consistency of the isothermal w indicates that 
al l nucleation events were essentially simultaneous . Also shown in Figure 6 
is hyperfine w; Wath that has reprecipitated during the requench of Ta. If 
this nucleation model is correct, re-aging at a lower temperature would mean 
that fewer wath particles revert to a, and more would become avail able as 
nuclei for wiso growth . Thus, a bimodal si~e distribution should be expected 
and, in fact, is found (Fib. 7) . If the original Ta is lowered, we should 
expect and find a higher number density of particles (Fig . 8) . 

A mechanism of isothermal growth is now required. The apparent anom­
alously rapid growth of w after only I minute at 400°C (Fig. 6) cannot be 
analyzed using di ffusional growth, That is, simple calculations of diffu­
sion at such low temperstures indicates that precipitation by solute segre­
gation to the 8+w tie line compositions of Figure I is impossible . Further­
more, the displacement controlled mechanism applied to atherwal w formation 
is ener8etically unfavorable in this regime . 

To surmount these difficulties, we visualize a 8 compositional fluctu­
ation in the vicinity of a qussi- static Wath particle. This would reduce 
the w free energy with respect to 6. In terms of Figure 1, the local 8 com­
position would enter the A-B regime. Following this event, growth by the 
displacive mechanism could then proceed as already discussed . We should 
thus observe a rapid physical growth of the w-phase, followed by a gradual 
chemical equilibration to the 6-w tie line compositions A and C. Such a 
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process was alluded to by De Fontaine e t al[9] . 

Note also, that in alloy compos itions just to the r ight of 'B' in 
Figure 1, particle growth vill be far more r.pid than chemical equilibration, 
while in heavil y $-stabilized compositions (near composition C of Figure 1), 
particle arowth snd chemical equilibr ation should correlate reasonably well. 
In fact , pr ecipi tation in t hese lat t er solute rich compositions should beain 
to a pproach the classical d i f f us ion controlled nucleati on and ar~th. 

There b exper a ental evidence for this in t he literature. Hic~nI 16] 
measured changes in B latt ice psrameters during w precipitation in Ti-V alloys 
of several composi t i ons. Since V markedly cont racts t he Ti lattice , he was 
abl e to use l attice parameter and VOl ume frac t ion data obtained f rom X-ray 
d iffrac t ion to fo llow changes in B and w compositions during aging. The 
physical growth of w was, i n fact, observed to occur over a shor t er time 
scale than the solute r ejec t ion of w. Recent MOssbauer workl17] in 
Ti-7.1wt%Fe shows '4 similar effect . 

Perhaps the most def ini t ive s upport fo r the diffusional ly assi sted, diS­
placemen t controll ed growth of w can be found 1n Figures 6 and 7. It has 
been a gener all y accepted observation that l ow misf i t w forming systems such 
as Ti- Mo and Ti-Nb form ellipsoidal wiso with the major axis of the ellip· 
soidal ly i ng along: t he "elasticslly soft" <lll>a direction [lg,19]. High 
misfi t systews such as Ti -Fe, Ti-V , Ti- Cr, Zr-Nb, Ti-Mn fora cuboidal w with 
the cuboid fsces l ying parallel to {l OO}g planes I19]. The generally accepted 
explana t ion of this phenomenon is that hIgh ~isfit systems must assume a 
shape minimi~ing strain energy , while low misfit systems t ake on a shape min­
imizing surface energy . The observation of ellipso idal w in t he high misfit 
Ti -lOV- 2Fe-JAl alloy (fig . 6) can only be explsi ned by the incomplete solute 
segrega tion between a and w. Continued aging (and con t inued sol ute segr e­
gation) then converted the sllipsoids to the aMicipated cuboids (Fig. 7) . 
It was ne~essary to lower Ta from 400·C to JOO·C during the second aging 
treatment in order to suppress Cl formation. 

The hyperfine particles of Figure 6 demons trate sti ll more support for 
the diffusionally assisted d isplacement control led growth process. Our ing 
requenching, a uni for m di str ibution of wat h appeared t hroughout t he untrans­
formed a matrix. The.lack of sn wa h free ~one around ~so parti~les de=on­
stra t es solute rejec t~on could not nave been extenSive during wiao growth. 
Note that the Wath is absent i n Figure 7 because the B matrix is now enr iched 
i n sol ute due to diffusional partitioning. 

The wi so final partic l e Size appears to be dependent on temperature more 
than time. We can visual ize four possible ressons that an isothermal W parti­
cle could s top growing . 

1. Chemical stabilization of the B matrix 
2 . Coher ency strains 
3. Dil atation strain fields over lip 

The fir st o f these is likely to be controlling when t he aging times are 
very long, or when the alloy composition is far to the right of composition 
' s' in Figure 1 . Coherency s trains,on the other hand, will tend to limi t 
gr owth at high tempera t ures snd short ti~es when the alloy compoSition is 
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near composition 'E' of Figure 1. In this 5ituation , the II matrix remain 
chemically un5table relative to the w structure, but the increase in strain 
energy that would result from further growth outweighs the chemical energy 
gains of transforming the 6 structure to w, It is yet unclear what magni­
tude or eVen what s enSe the dilatational strain fields surrounding a growing 
w particle might have. It may be that when the particle density is high 
(Fig, 8) , growth is limited by the interaction of such strain fields. Per­
haps it is this interaction which prevents high w dispersion densities from 
adopting a specific particle shape. 

Conclusions 

A model for the isothermal precipitation of w in Ti alloys has long 
been presented, which utilizes chance compositional fluctuations to set the 
stage for a compositionally invariant growth mechanism. In heavily 6-
stabilized alloys, this type of growth does not differ from "claasical" 
diffusion controlled growth . As the alloy content becomes leaner (or the 
II structure less stable), the compositionally invariant growth mechanism 
begins to dominate, and certain "unusual" growth phenomenon is observed, 
which distinguishes the 6+w reaction from most others. For example, a mor­
phology transition from ellipsoids to cuboids was noted in Ti-lOV-2Fe-3Al 
at a constant size . I t was proposed that this could result fr om a rapid, 
chemically invariant w particle growth, followed by a slow composition 
equilibration. 

Acknowledgments 

This work has been supported by the Office of Naval Research. Exper­
imental work has been conducted using facilities provided by The Center for 
the Joining of Materials. The authors gratefully acknowledge the experi­
mental assistance of M. Clatz and the secretarial help of Mrs. A. M. Crelli. 

1. 

2. 
3. 
4. 

6. 
7. 
B. 

9. 

References 

J. M. Silcock, M. H. Davies , and H. K. Hardy: in "The Mechanism of 
Phase Transformations in Metals", Inst . of Met. London, (1956), 93. 
B. S. Hickman: Trans. AIME , 245, (1969), 1329. 
M. J. Blackburn and J. C. Williams: Trans. AIME, vol. 242 , (1968), 813. 
B. A. Hatt and J. A. Roberts: Acta Met., 8, (1960), 57~ 
B. Borie, S. L. Sass, and A. Andreassen: Acta eryst" A29, (1973), 585 . 
J. M. Sanchez and D. De Fontaine: J. App1. Cryst., 10, (1977) , 220. 
S. L. Sass: Acta Met., 17, (1969) , 813. 
Y. A. Bagaryatskiy and G~I . Nosove: Physics of Met. and Mete110g., 11, 
(1962), 92. 
D. De 
1153 . 

Fontaine, N. E. Paton, and J. C. Williams : Acta Met., 19, (1971), 

10. D. De Fontaine: Acta Met., 18, (1970), 27 5. 



w-P HASE REACTION IN TITANIUM ALLOYS 1305 

11. H. E. Cook: Acta Me t ., 22, (1974), 239. 
12. H. E. COok: Ac t a Met., 23, (1975), 1041. 
13. H. E. COok and W. J . Pardee: Acta Met., 25, (1971), 1403. 
14. S. C. Moss , D. T. Keating, and J. O. Axe:--Phase transformations 1973, 

(ed. L. E. Cross) Persamon Pr ess , Oxford , (1973) , 179 . 
15. V. C~ndraseksrant, i. Taggert, and D. H. Po1oni.: Keta11o&rapny, 6, 

(1973) . 313. -
16 . ll . S. Kiclcman: J. Inst. Met., 96, (1968), 330. 
17. K. H. Stupe1 , H. Ron , and B. Z.We1 ... : Ket . trans., 9A. (1978),249. 
18. B. S. Hickaan: J. Kat. Sci. , 4 , (1969), 554. 
19. H. E. COok: Acta Ne t •• 21. (1973), 1445. 



1306 T. W. Duerig et al. 

, , , , ,. , , , , 
'\-~-:?f:;:~ , ' , 

" " '--

• • 
P STA81lllU eONTUIT 

Fig. 1 _ Schematic free energy curves 
for the a, 6 , and til phases in a B 
stabilized T1 alloy. 
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Fig. 2 - At hermal til in ~-ST and 
vater quenched Ti- 10V-2Fe- 3Al 
shown by dar k field TEM. 

fig. 3 - Repruentation of the atomic 
"shuffles" involved in the 6-w trans-
formation. Cl osel1 circles represen t 
til lattice positions , and open circl es 
represent the !!.hplaced, " til latt ice 
sites. the (110)6 plane " shown 
wi t h the atoms disple.c·ed by • .. 1 -• 3' 11121 wave • 
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Fig. 4 _ Schematic representation of 
a fret energy versus wave amplitude 
curve for a ~ _ 1 <112> transversa 
wave. ~ 3 
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, 

Fig . 5 - (a) Modulated sinusoidal 
wave, f orming wave "packets" of 
alternating "sense" , and (b) t he 
growth of discrete w particles from 
the above packets. The displace­
ments of the center packet are 1800 

out o f phase with the " proper" 101 
displacements , and are t her efore 
uns table . 
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Fig . 7 - Cuboidal isothermal w, in 
B-ST Ti-lOV- 2Fe-3Al duplex aged at 
400'C for 1 minute, and 300'C for 
4S minutes . 

Fig . 6 - Ell ipsoidal isothermal w 
in B-ST Ti-lOV-2Fe- 3Al aged at 
400·C f or 1 minute . 

Fig. B - Isothermal w of non­
desc.rip t form, in B- ST Ti-10V-2Fe-
3A1 a ged at 260'c for 10,000 mins . 


