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FINITE ELEMENT ANALYSIS ON NITINOL MEDICAL APPLICATIONS

Xiao-Yan Gong and Alan R. Pelton
Nitinol Devices & Components, 47533 Westinghouse Drive, Fremont, CA 94539

ABSTRACT

This article presents two applications of nonlinear Finite Element Analysis (FEA). In the first
example, FEA predicts the stress-strain response of a superelastic Nitinol device at different austen-
ite finish temperatures (As) when tested at 37°C. The second example illustrates the method for

evaluating a stent’s fatigue performance. The analyses are found to agree well with the theoretical
prediction and/or experimental measurement. The focus of this presentation is on the use of FEA as
apredictive design tool for fast prototyping of Nitinol medical devices.
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NiTi, Finite Element Analysis, Medical Application, Stent, Minimally Invasive Surgery

INTRODUCTION

Nitinol’s biocompatibility has made it a great material for many medical applications such as den-
tures, orthodontic arch wires, needles, guide wires, heart valve instruments, self-expanding stents,
vena cava filters, minimally invasive surgery instruments, and septal defect occlusion systems, to
name afew [1-4]. Many of these devices are implanted into the human body viaminimally invasive
surgical procedures taking advantage of the unique superelastic behavior of Nitinol. With increas-
ing market demand and competition, a predictive method that can shorten the time and resources
from design to production becomes the key in new product development. Traditional beam theory
provides reasonable estimations in some applications, but success is limited to small strain [5].
Nonlinear Finite Element Analysis (FEA), which is capable of not only dealing with the compli-
cated geometry, but also modeling the nonlinear material response, becomes more and more impor-
tant in product design.
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The superelastic material behavior generates anaysis difficulties due to its path-dependence and
high nonlinearity. This calls for efficient constitutive modeling because it is inevitable that numeri-
cal iteration is necessary during the analysis. Phenomenological approaches are the most suitable
solution for the simulation efficiency. Theories based on either the generdized plagticity theory,
which focuses on the material response at a given temperature, or a free energy framework, which
focuses on the temperature dependencies of the material, or even the micromechanics models have
been developed independently in the past decade [6-13]. Based on severa of these approaches,
ABAQUS West commercialized a User-defined Material (UMAT) subroutine specific to Nitinol
based on the generalized plasticity theory [7—9]. Many applications demonstrated that the UMAT is
capable of predicting the uniaxial material response at different temperatures, a Nitinol stent’s
deformation, and Austenite or Martensite composition at any material point in addition to the stress
and strain fields [14-15]. Therefore, it is used in the analyses presented in this paper. Recently,
comparison of the Abaqus West UMAT and another UMAT by EchoBio has shown that both
approaches agree very well with one another and they both predict the experiment results well [16].

This article focuses on analyzing Nitinol’s medical applicationsin minimally invasive surgery. The
analyses are divided into two categories. We choose a representative device from each category and
discuss the analysisin detail. The first device analyzed is a Nitinol needle/wire locator. The second
device is a self-expanding stent. They are chosen with general indications on many other applica-
tions as listed in the section below. In both cases, experimental data are used to compare with the
analysisresults. Theoretical estimations are also provided to further confirm the analysis results.

In the needle/wire locator application, we show that the UMAT is able to predict the uniaxial mate-
rial response at different austenite finish temperature (A¢) by comparing with the experimental data.

This opens doors for the optimization of the A to achieve the most suitable design. It also indicates
that the material properties at different As or application temperatures are predictive. The stress
analysis on the device is straightforward since the hook wire is constrained very tightly inside the
needle. Furthermore, the peak stress and strain values can be estimated from pure geometry change.
Comparison shows that FEA agrees well with the theoretical prediction.

In the stent application, we briefly review the FEA procedures in evaluating a stent’s fatigue strains
in vivo. Our focusis aimed on the FEA results on a fatigue specimen simul ating the deformation of
stentlike devices, i.e., a diamond-shaped specimen. Fatigue tests on this test specimen are used to
set up the strain-life curve that dictates the baseline for fatigue prediction [17]. FEA results on dia-
mond shaped specimen are compared with the load-displacement results collected from the experi-
ment. A theoretical solution based on a piece-wise linear approximation in combination with the
fundamental beam theory is generated on the loading portion of the specimen for comparison.
Results show good agreement between FEA, theoretical prediction, and the experimental data.

NEEDLE/WIRE LOCATOR

Figure 1 shows the Mitek Homer Mammal ok needle/wire locator. It is a two-piece device that con-
sists of a Nitinol wire with a semicircular-shaped hook at one end, which served as a locator to
identify the tumor location in the application, and a hollow needle that the wire dides into. The
locator is originally withdrawn inside the needle cannula [18]. During the application, the needle is
inserted into the breast and adjusted until itstip is verified to be at the site of the tumor. The locator
is then advanced and reforms the hook configuration. The position of the hook marks the correct
location for the surgeon. If necessary, the locator can be withdrawn into the needle until the correct
location isidentified.
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The design challenge was to have a strong hook so that it can be placed in position tightly, yet was
not too hard to withdraw into the needle. One of the possible design options, from a materia appli-
cation point, was to choose the right As temperature. Pelton et al. provided details on how to obtain
the desired A; [19]. Pelton et al. later also pointed out that the best way to optimize both A¢ and the

geometry isto perform FEA without actually making and testing the device [20]. Thistype of FEA
normally involves a curved wire withdrawn into a straight tube. The analysis is very straightfor-
ward. One can mesh the wire with solid elements and simplify the needle asarigid cylinder. Use of
symmetry can reduce the model to a half of its actual size. Prescribed displacement condition can
be used to pull the wire through the rigid cylinder. The outputs from FEA are the stress and strain
fields and the contact pressure between the wire and the needle (rigid surface). The wire diameter is
0.38 mm and the hook radiusis 4.8 mm in this study. The maximum tensile and compressive strains
are theoretically estimated from the curved beam theory to be approximately 4.1% and —3.8%
respectively.

A uniaxial tensile test is necessary to calibrate the UMAT for analysis. For comparison purposes,
the tests were performed at 37°C for wires that are processed to have three different As tempera-

tures, i.e,, —10°C, 14°C and 27°C. We used the highest A, i.e., A; = 27°C, to calibrate the UMAT.
We then run a single element test to predict the stress-strain relations for the other two A; wires.
Figure 2 shows the comparison of the FEA prediction and the experimental results of the highest As

wire. As one can tell, the calibrated material response reproduces the experimental results very
well. Figure 3 shows the comparison of the FEA prediction and the experimental results on the
lower A wires. Again, theresults agree, especially well in the range of application interests, i.e., up

to 6%.

— el -

Figure 1 Mitek Homer Mammal ok needle/wire locator.
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Figure2 FEA material model calibrated using As = 27°C.

Figure 4 shows stress contour on the deformed shape for different A; wires when they are with-
drawn into the needle. Clearly the different A; wires produce different magnitudes of stress field.
The lower the A¢, the higher the stress it produces. Therefore, the lower the A¢, the harder it isto
withdraw the wire into the needle. When the strain contours are plotted, there is less difference



446

Stress (MPa)
Stress (MPa)

Figure 3 (left) Comparison of the uniaxial tensile testson As = 14°C wireswith FEA prediction
fromthe A; = 27°C input data, (right) Comparison of the uniaxial tensile tests on A; = =10°C wires
with FEA prediction from the A; = 27°C input data.

between the different A¢ wires. Thisis because the deformation is bending dominant and the wireis
so well confined in the needle—despite the different material responses for the different A; temper-

atures, the strain field is independent of the materia response. Figure 5 plots the comparison of
strain distributions for different A; wires and the theoretical prediction based on nonlinear beam

theory when the loading portion of the Nitinol’s stress-strain response is approximated as piece-
wise linear elasticity. The results are almost identical. Notice these are the strain distributions in the
body portion of the arc of the wire; at the locations where the wire changes from straight to arc the
strain is dightly higher. This phenomenon, normally referred to as an end effect, can only be pre-
dicted from the FEA. Figure 5 shows the strain distribution at this |ocation with comparison to the-
oretical prediction. As one can see, the strain is higher than the body portion of the curved wire.
Therefore, even theory and FEA agree closely on predicting the strain in the body portion of the
curved wire. FEA can also capture the end effect nicely and predict the strain more accurately.

This analysis technique also applies to other wire-shaped devices such as a duct-occlusion device, a
radio frequency interstitial tissue ablation device, and a hingeless grasper [1-2] and withdrawing of
avenacavafilter.

STENT FATIGUE ANALYSIS

A stent is ametal mesh made either from fine wires or from laser cutting tubesinto desired patterns
set in place to hold a vessel open. The superelastic behavior of Nitinol eased the design due to its
large strain capability. Duerig et al. discussed the most important differences between a balloon
expandable stent normally made of stainless steel and a self-expanding stent made of Nitinol in
addition to the key design issues [21-22]. Regardless of their differences, the most important design
issues for a successful stent remain its fatigue life and the stent stiffness. Testing of a Nitinol stent’s
gtiffness and corresponding prediction from nonlinear FEA was straightforward. Gong et al. have
demonstrated recently that FEA prediction of aNitinol’s stiffness agrees with the experiment [16].

However, prediction of a Nitinol stent’s fatigue performance was not an easy task. Based on the
fundamental strain-life approach, prediction of a stent’s fatigue performance required a precise
analysis of the fatigue strains of a stent in vivo and a profound understanding of Nitinol's fatigue
behavior under the similar deformation patterns. Nonlinear FEA has been shown to be very
effective in computing the fatigue stresses of a balloon expandable stent made of stainless steel
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Figure4 Longitudinal stress contoursin the same scale when a different A¢ Nitinol locator has
been withdrawn inside the needle indicates stressincreases as A; decreases.

[23]. A similar approach appliesto Nitinol self-expanding stents, yet Nitinol’s complicated material
properties and multiple expansion and shape set steps in stent manufacturing discouraged the
fatigue analysis of the self-expanding stent’s fatigue strainsin asingle FEA from the “as-cut” stent
configuration. Therefore, we proposed to compute the Nitinol self-expanding stent’s fatigue strain
from its manufactured configuration. An example of an FEA model for computing the fatigue
strains of a Nitinol stent in vivo is shown in Figure 6. The model contained a Nitinol stent and a
straight artery to simulate the interaction of a stent and the artery in vivo. Because the fundamental
fatigue data or the strain-life curve was collected on the loading portion of Nitinol's stress-strain
response, it was very important that the fatigue strain was also evaluated on the loading portion of
Nitinol’s stress-strain response. For this reason, the fatigue strain analysis technique for a Nitinol
self-expanding stent was simulated in the following two steps. The flexible contact between the
artery and the stent was “turned off” until the final stage of the analysis. To ensure that the fatigue
strains are evaluated at the loading path of the Nitinol, the first step of analysis was to expand the
artery to a diameter that was slightly larger than the stent outer diameter (OD). This was done by
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Figure 5 (left) Edge-to-edge longitudinal strain distribution when Nitinol locator was withdrawn
inside the needle, (right) Edge-to-edge longitudinal strain distribution comparison at the end of a
curved wire when it was withdrawn inside the needle.

applying an internal pressure on the artery. In the second step, the contact between artery and stent
was turned on and the pressure applied to the artery in the first step was now ramped down to zero.
As the pressure was ramped down, the artery diameter reduced and therefore the interaction
between the stent and the artery occurred when the contact between stent OD and the artery surface
was established. This portion of analysis placed strain on the stent as a function of the pressure on
the stented artery. Fatigue strains were then determined by locating the strains at different pres-
sures. Clearly the alternating strain was dependent upon the vessel compliance and the pressure dif-
ferential. The mean strain, on the other hand, was dominant by the amount of oversizing. Our

calculation indicated that the CordissNDC SMART ™ family of stents had a mean strain from 1%
to 2% per their product IFU.

In addition to fatigue strains, one can also obtain the stent diameters at different pressures. In our
studies on severa Nitinol self-expanding stent product lines, FEA predictions of stent diameters
agreed extremely well with the actual 1ab measurement of the stent diameters. These built confi-
dence on the fatigue strain predictions[24].

To establish afatigue baseline (a strain-life curve) for stent application, the test specimen must have
similar deformation patterns to the deformation of a stent in vivo. A direct and efficient way to
establish the strain-life curve for a stent is to perform fatigue testing on its individual struts. How-
ever, such “unzipped stents’ are not easy to handle experimentally. We therefore built a unit cell of
a stent, i.e., a diamond shaped specimen, to overcome the handling difficulties (Figure 7). It was
designed to be similar to the strut geometry from several commercially available stents. The small
holes in the ends of the sample were to assist in alignment and gripping the sample. The samples
were processed in the same manner as a stent so that it had the same A; and electropolished surface
finish. They were stretched and compressed before the actual fatigue test and the load and displace-
ment were recorded to ensure the processing consistency in sample preparation [22].

FEA was used to calculate the strain field in the specimen so that the test could be planned at the
most relevant in vivo conditions for stent application; the results were interpreted as a strain-life
curve [22]. Notice that when only the loading portion of the curve was considered, one could sim-
plify the stress-strain curve as piecewise linear. Under this simplification, the beam theory was used
to estimate the maximum strain inside the specimen and predict the load-displacement relation on
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the loading path to confirm the FEA. Figure 8 shows that the theoretical prediction, FEA, and the
experimental data agreed closely.

Fatigue tests were performed during the past two years and the test results were presented in refer-
ence [17]. By using the same analysis code and controlling the same process procedures, we were
able to ensure fatigue safety. Accelerated device tests performed on several stent product lines have
confirmed our predictions.

Stent Modeled with Solid Element

Mock Artery Modeled as Shell Elements

Figure 6 FEA model for stent fatigue strain analysis includes multiple rows of strutsto cover the
end effects and an artery to simulate the stent-artery interaction.

Figure 7 Diamond shaped specimen for fatigue study.

CONCLUSION

From two typical minimally invasive medical device applications, we showed that nonlinear FEA
has opened the door for Nitinol engineering evaluations. This indicates it can be used as a predic-
tive tool prior to prototyping the designs to optimize the device functionality, not only by varying
the geometry of the design, but also by tuning the material properties. In addition, FEA can identify
the fatigue strains at given in vivo conditions. This approach also addresses the device' s fatigue life,
which is essential for most implantable devices, provided a strain-life curve has been established
from the same FEA to ensure consistency. To summarize, the use of FEA helps one to understand
the device functionality and the fatigue properties of Nitinol. Experiments coupled with FEA can
guide the device designer in improving service life and optimizing the device functionality.
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Figure 8 Comparison of FEA, theoretical prediction, and experimental data of |oad-displacement
relation on a diamond-shaped specimen.
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